
ASTERISK
A conceptual introduction

Ben Fuhrmannek <bef@eventphone.de>
May, 2007

Draft 1

Asterisk - A conceptual introduction	

 1

DRAFT

mailto:bef@eventphone.de
mailto:bef@eventphone.de

TABLE OF CONTENTS

Introduction	

 3

Understanding the PBX	

 4
About Files and Modules	

 4

Peers and Users	

 5

Journey of an Incoming Ca$	

 6

Command Line Interface	

 8

Security Considerations	

 9

Coding the PBX	

 13
Asterisk Extension Language (AEL)	

 13

Asterisk Gateway Interface (AGI)	

 15

Asterisk Manager Interface (AMI)	

 16

Notes	

 18
Acknowledgements	

 18

Further Reading	

 18

A Word About Related Projects	

 18

Author Contact	

 18

License	

 18

Asterisk - A conceptual introduction	

 2

ASTERISK
A conceptual introduction

Introduction
As ironic as it might appear, this is the introduction to the conceptual introduction to
asterisk. You - the reader - are probably aware of the fact that the word asterisk1 refers not
only to a symbol representing a star (*) in this document, but rather tries to emphasize
what has fascinated millions of humans throughout the decades since the invention of
the telephone itself. I am talking about an extraordinary private branch exchange2, of
course. At the end of the 19th century - where the telephone and its corresponding net-
work had just been invented - a person had to connect two phone lines manually in order
to establish a connection between two phones eventually leading to a bilateral conversa-
tion. Although this person was replaced long ago by automated techniques not involving
people for each and every connection, asterisk’s job can be considered almost identical to
the job of this switchboard handler. Now, that you have learned to appreciate the true
meaning of the word asterisk I would like to take a minute and try to describe you - the
target group. There are so many forums and documentation wikis related to asterisk and
the configuration of asterisk available in this write-only medium commonly referred to as
the internet. As a direct consequence - and the fact that you are still with me underlines
my theory - I conclude that you either stumbled over this document by accident or -
which is more likely, yet not mutually exclusive - you would like to broaden your mind by
adding a new perspective regarding the asterisk open source private branch exchange to
your own, personal repository of memories. While I cannot promise the ultimate en-
lightenment it might still be illuminating to finally understand one of the concepts of
modern communication. For starters, I would like you to keep in mind, that the whole
point of fiddling around with asterisk is neither a better understanding of its versatile
configuration nor quenching your never ending thirst for knowledge - although this
comes very close to it -, but in my opinion the whole point is to enable people to com-
municate with each other.

Nevertheless the content of the next few pages will provide you with a quick start into
asterisk starting with a conceptual overview leading to a better understanding of how to
configure your PBX. This is closely followed by a section describing the most exciting
ways of how to extend asterisk unleashing an idea of its true potential.

Asterisk - A conceptual introduction	

 3

1 http://www.asterisk.org

2 private branch exchange: http://en.wikipedia.org/wiki/PBX

http://www.asterisk.org
http://www.asterisk.org
http://en.wikipedia.org/wiki/PBX%06
http://en.wikipedia.org/wiki/PBX%06

Understanding the PBX
Asterisk comes with such a broad range of functionalities making it exceptionally config-
urable however rather complex, too. In order to break down this complexity I would like
you to step back and take a look at the bigger picture here. We would like to connect one
phone to another. So, after commenting on asterisk’s general structure and its configura-
tion files I will change the perspective and take a look at the two phones desperately de-
siring to be connected from the point of view of our PBX. Here we can follow the path
of an incoming call in detail along with all corresponding configuration files.

A good start in understanding asterisk is a hands-on approach. In order for this to work
you should have a working copy of asterisk installed on your system ready to be config-
ured or reconfigured respectively. I am using an asterisk version 1.2.18 for my explanations
and although there is probably a newer version available when you read this introduction,
the basic concepts explained here are likely not to have changed considerably.

A B O U T F I L E S A N D M O D U L E S
First of all it is crucial to know that asterisk possesses the ability to be extended by mod-
ules which are loaded during runtime. Virtually every other functionality is packed into
these modules. By naming convention every module is prefixed by a string representing
the kind of functionality it provides for the asterisk server. You can see for yourself by
typing ls /usr/lib/asterisk/modules into your favorite shell assuming you are using
the default paths for your asterisk installation. The following table clarifies the meaning
of each prefix.

P R E F I X D E S C R I P T I O N

app_ applications which can be invoked from within the dialplan

func_ functions for use in the dialplan

chan_ channel drivers - e.g. for IAX2 or SIP

codec_ audio and video codecs

format_ audio and video formats

cdr_ call detail records

pbx_ core features of the PBX - e.g. config-file parsing

res_ resources to be used by other modules - e.g. database access

Considering that most modules can be configured by their own separate configuration
file it comes as no surprise that there are quite a lot of these files. So, let’s get over it and
embrace the overwhelming quantity of asterisk’s configuration files in all its beauty.

Asterisk - A conceptual introduction	

 4

$ ls /etc/asterisk
adsi.conf codecs.conf logger.conf queues.conf
adtranvofr.conf dnsmgr.conf manager.conf res_odbc.conf

agents.conf dundi.conf meetme.conf rpt.conf
alarmreceiver.conf enum.conf mgcp.conf rtp.conf

alsa.conf extconfig.conf misdn.conf sip.conf
asterisk.adsi extensions.ael modem.conf sip_notify.conf
cdr.conf extensions.conf modules.conf skinny.conf

cdr_custom.conf features.conf musiconhold.conf telcordia-1.adsi
cdr_manager.conf festival.conf osp.conf voicemail.conf

cdr_odbc.conf iax.conf oss.conf vpb.conf
cdr_pgsql.conf iaxprov.conf phone.conf zapata.conf
cdr_tds.conf indications.conf privacy.conf

All we need to worry about - at least for the moment - is the iax.conf, sip.conf and
extensions.*. Most asterisk configuration files (*.conf) are easy enough to understand.
Each file is separated into sections in a win.ini-style fashion, followed by a list of key/
value pairs seperated by => or = like so:

[section]
key1 => value1
[section2]

key = value

If you are unfamiliar with asterisk it can be a good idea to have a look inside one or two
of the configuration files using your favorite text editor, just to get a feeling for the syn-
tax.

P E E R S A N D U S E R S
If we recall our original intension, we still need to connect two phones. Let us assume
that one of the phones is a VoIP phone which has got the SIP protocol implemented.
Now, in order to place or receive calls the phone must be known to our server which can
be accomplished by registering in advance. The SIP account configuration typically re-
sides inside sip.conf where a minimal section for our phone would look like this:

[2004]
type=friend
host=dynamic

secret=abc
context=local

Asterisk - A conceptual introduction	

 5

If we were using an IAX3 phone the minimal configuration for iax.conf would be identi-
cal. And of course you may want to manage all your SIP and IAX accounts using a data-
base management system which is covered by the realtime extension4 introduced in as-
terisk 1.2.

Using this configuration our phone can register with the asterisk server using the user-
name 2004, the password abc and an arbitrary originating IP address (host=dynamic).
The type of an account can either be a peer permitting our asterisk server to place out-
going using this account or it can be a user who is allowed to call us. A friend combines
both user and peer in a single account configuration.

When registering a SIP account the
corresponding
account con-
figuration can
c o n t a i n
authentication
in format ion , a
r ange o f a l-
lowed codecs,
a ma i lbox
number, a
ca l l e r ID or
other parameters explained in
detail in asterisk’s sample configuration file.
For processing an incoming call asterisk requires an association of a context to the ac-
count the incoming call is using. Just like the SIP configuration is divided into different
accounts asterisk’s dialplan is divided into contexts. So the context given in the account
configuration determines which part of the dialplan is to be searched for a dialed exten-
sion.

J O U R N E Y O F A N I N C O M I N G C A L L
Our second phone - the one we would still like to call - could be an IAX phone which is
registered to the asterisk server, too, using the account name 2005. Originating from our

Asterisk - A conceptual introduction	

 6

3 IAX and IAX2 both refer to the Inter Asterisk eXchange protocol version 2

4 http://www.voip-info.org/wiki-Asterisk+RealTime

SIP
Phone
2004

IAX
Phone
[2005]

dialplan

SIP
Phone
2004

sip.conf

context
[local]

account
[2004]

authenti-
cation

codec
selection

calleridmailbox

...

http://www.voip-info.org/wiki-Asterisk+RealTime
http://www.voip-info.org/wiki-Asterisk+RealTime

SIP phone we could simply dial 2005 and observe what’s happening. Based on the SIP
phone’s IP address and its authentication credentials asterisk’s SIP module can link the
account 2004 to the incoming call. In addition we know the context in which to search
for the dialed extension 2005 in the dialplan. The original way to create a dialplan, which
actually had been the only way in asterisk 1.0 and before, is using the configuration file
extensions.conf. A simple extension for calling our IAX phone could look like this:
[local]
exten => 2005,1,Dial(IAX2/2005)

What we can see here is the definition of a context in brackets ([local]) consisting of
one extension. The keyword exten precedes every definition of an extension. 2005 - the
first of these three comma separated parameters - resembles the number of our exten-
sion, followed by a priority (1) and an application (Dial). Starting with 1 the priority indi-
cates the order in which applications are executed. An accurate analogy would be a pro-
cedure in a programming language where 2005 is the procedure’s name, the priority is
the line number in a BASIC-like style. As anticipated the Dial-application is used for
dialing. A complete description of the asterisk dialplan can be found in the asterisk
documentation5.

A slightly more sophisticated way of creating a dialplan is provided by the asterisk exten-
sion language (AEL). Included into the configuration file extensions.ael the following
example generates exact l y the same d ia lp l an a s the one abo ve :
context local {
	

 2005 => Dial(IAX2/2005);
};

As you can see the AEL looks a bit more
like a programming language
and in fact it adds elements
like conditions (if, switch)
and loops (while) to the di-
alplan without having to re-
vert to goto-structures. The resulting di-
alplan however is isomorphic for both AEL
and extensions.conf.

So, now we can simply dial
2005 and cause the Dial-
application to be executed
with the parameter “IAX2/
2005” which is called the di-

Asterisk - A conceptual introduction	

 7

5 asterisk-1.2.x.x/doc/extensions.txt

dialplan

SIP
Phone
2004

sip.conf

context
[local]

account
[2004]

extension
2005

IAX
Phone
2005

iax.conf

account
[2005]

Dial
(IAX2/
2005)

alstring. IAX2 refers to the channel type to use, 2005 is the name of an IAX peer or
friend account configured in iax.conf. Using this information the server can easily call
the IAX phone. The illustrating figure next to this paragraph concludes our journey
through the PBX along with an incoming call. I suggest you sit back and let it all sink in
before commencing the next section.

C O M M A N D L I N E I N T E R F A C E
Everybody likes to play around and as far as asterisk is concerned you’ll have plenty of
opportunities to do so because the asterisk console - also known as command line inter-
face (CLI) - provides the ultimate playground. This is where all the action takes place in
terms of verbose debugging output including error reporting, realtime configuration and
help acquisition and we’ll jump right into the middle. Just start up asterisk in console
mode using the command asterisk -cvvvv or attach to an already running asterisk by
typing asterisk -rvvvv6. The vvvv means very very very verbose7 which enables us to
watch lots of useful messages passing by. Once the asterisk console is started you can see
a prompt ending with *CLI>.

The CLI can be operated with ease using the built-in tab completion meaning you can
press the tab key once to complete a word of the command you are about to type in
automatically or view a list of available commands or parameters. This feature can in-
crease the speed of your work with the CLI immensely. So let’s start by pressing tab. The
output shou ld look l ike the fo l lowing :
router*CLI>
! abort add ael agi cdr
database debug dnsmgr dont dump extensions

feature group help iax2 include indication
init load local logger meetme misdn

mixmonitor moh no pri realtime reload
remove restart rtp set show sip
soft stop unload zap

Each of these keywords either is a complete command or the beginning of a command. A
few commands are particularly worth mentioning due to their relevance for everyday
maintenance and debugging:

C O M M A N D D E S C R I P T I O N
quit detach from the CLI

stop now stop asterisk

Asterisk - A conceptual introduction	

 8

6 a nice abbreviation of asterisk -r is rasterisk

7 setting the verbosity to 4 using the CLI command set verbose 4 is equivalent

C O M M A N D D E S C R I P T I O N
reload reload all modules

extensions reload
ael reload

reload the dialplan from extensions.conf
or extensions.ael

sip reload / iax2 reload reload the SIP or IAX2 module

soft hangup ... manually hangup a channel

show ... show useful stuff

A complete list of CLI commands is shown by typing help. You may also type help fol-
lowed by a command to retrieve a more detailed help, e.g. help help. Another very pow-
erful source of information hides behind the keyword show. For instance, the command
show channeltypes can get a list of available channel types which are used in a dialstring,
like IAX2 seen in a previous example. Similarly a list of supported codecs is shown using
the command show codecs, and even the current dialplan can be viewed by typing show
dialplan.

One of the most useful capabilities of the command line interface is the debugging featu-
rue. As you might already have witnessed while playing with the CLI each call shows log
messages on the console. For example, if I called number 7399 on a server listed as
server1 in iax.conf the output would resemble the following:

 -- Executing Dial("mISDN/1-1", "IAX2/server1/7399|60") in new stack
 -- Called server1/7399
 -- Call accepted by 10.0.0.1 (format alaw)

 -- Format for call is alaw
 -- IAX2/server1-1 answered mISDN/1-1

 -- Hungup 'IAX2/server1-1'
 == Spawn extension (inbound, 7399, 3) exited non-zero on 'mISDN/1-1'

By scanning through the output you can easily recognize that the call originated from an
ISDN line and was accepted within 60 seconds by 10.0.0.1 using a-Law as codec. Even-
tually the channel was hung up in the end. Even more debugging output could have been
seen if we switched to IAX2 debugging mode in advance (iax2 debug). A good starting
point for logging these messages would be the corresponding configuration file
logger.conf.

S E C U R I T Y C O N S I D E R A T I O N S
Please, don’t get lost in all the excitement about the newly discovered playground and
take a minute to consider the proper security for your asterisk installation. When I say
security I would like to protect

• the operating system running asterisk from being exploited remotely or locally,

Asterisk - A conceptual introduction	

 9

• secrets such as passwords and account data for accessing VoIP services or databases,

• the access to my own VoIP services,

• my privacy.

O S - E X P L O I T S

Asterisk is mostly written in C and due to the nature of C it can be rather simple for a
programmer to implement security risks - unintentionally of course. So, although it is
next to impossible to prevent software from containing the possibility of buffer over-
flows, format string exploits and memory leaks we can try to minimize the risk of hostile
exploitation.

For starters running asterisk as a user other than root may prevent a compromised aster-
isk from compromising the whole system. All you need to do is

• add a new user and group (e.g. asterisk) to your system using the preferred method (us-
eradd, adduser, vi /etc/passwd /etc/group, ...) and

• change the ownership of a few files and directories:
chown -R asterisk:asterisk /var/{lib,log,run,spool}/asterisk
chown -R asterisk:asterisk /usr/lib/asterisk /dev/zap

chmod -R 750 /var/{lib,log,run,spool}/asterisk
chmod -R 750 /usr/lib/asterisk /dev/zap

It may be necessary to adjust permissions for other files, too, depending on asterisk’s
required resources. Tools such as lsof and strace can be of help there.

• start asterisk with asterisk -U asterisk

P A S S W O R D S E C U R I T Y

In order to protect your account passwords we have to make sure that these passwords
are stored and transmitted securely. Changing permissions for the configuration files cov-
ers the first part:

chown -R root:asterisk /etc/asterisk
chmod -R 750 /etc/asterisk

Now, transmitting your account password in one or the other way cannot be avoided dur-
ing the authentication process. Therefore all but plain-text authentication should be used
solely: E.g. Setting auth=md5 or auth=rsa for all sections in iax.conf does the trick for
IAX.

Asterisk - A conceptual introduction	

 10

D I A L P L A N S E C U R I T Y

When configuring the dialplan you should always keep in mind that guest users might
suddenly appear in your server. Keeping your IP-address private or obfuscating SIP-Ports
does count as security by obscurity and is counter-productive. If you want to keep people
out of a context, implement a proper authentication. It should also be mentioned that
there are dialplan applications which can jump between contexts, such as DISA and
Goto.

P R I V A C Y P R O T E C T I O N

In the PSTN it is possible to suppress a caller id granting the caller a certain level of ano-
nymity. For a VoIP connection, however, your your asterisk is giving away tons of useful
information:

• IP address
Two computers communicating via the internet must know their counterpart’s IP ad-
dress. If you wanted to conceal your true IP address then you could redirect all VoIP
traffic through a proxy server or an anonymity network like the tor network8. Redirect-
ing time critical traffic like a realtime conversation will most certainly increase its la-
tency - which is usually not desirable.

• Caller ID
Like an e-mail address for email a caller id can uniquely identify a VoIP user. But unless
the VoIP user was authenticated properly - e.g. by RSA or MD5 authentication - the
caller id could have been altered and cannot be trusted.

• User Agent
Most VoIP protocols transfer the name of the device or software used - aka user agent -
by default. For example the default user agent for asterisk’s SIP channel is “Asterisk
PBX”. This can be changed for SIP by modifying the useragent parameter in
sip.conf.

• Password
As mentioned previously your VoIP authentication might be using plain-text. This is
insecure and can be intercepted. Simply use a different authentication mechanism.

• Codec
There is not much an observer can learn from the used codec. However it can be specu-
lated that a compressed codec (GSM, Speex, ...) is being used because of a bandwidth
limitation and thus our line is open for a denial-of-service attack. Furthermore the or-
der in which different codecs are negotiated between a caller and a called party can give
a hint about which user agent is actually connected to each end of the connection. A-
Law is dominant in Europe whereas µ-Law is more often used in Japan and USA.

Asterisk - A conceptual introduction	

 11

8 http://tor.eff.org/

http://tor.eff.org
http://tor.eff.org

The point is: Do not underestimate the value of seemingly unimportant giveaways of
information.

• Spoken Word
Apart from speaking encrypted yourself, there are ways to encrypt the VoIP traffic. The
logical approach to encrypting VoIP would be a by-call negotiation of the encryption
method and the keys used, comparable to the codec negotiation. SRTP would probably
be the protocol of choice if it were implemented in asterisk. Alternatively there is a
somewhat undocumented and unstable AES encryption available for MD5-
authenticated IAX connections. One layer down, we can always encrypt our IP traffic
using the usual suspects: OpenVPN, IPsec, PPTP, ...

• The mere existence of the call itself
Can anyone determine if I’m on the line or not at any given moment? If you ever
thought about this question then you are paranoid. There is simply no way anyone
could set up a reliable steganographic network capable of VoIP. Just in case you manage
to do so anyway, don’t hesitate to call me.

Asterisk - A conceptual introduction	

 12

Coding the PBX
Configuring a PBX is literally like programming. Even if you are not too much into pro-
gramming you might want to read this chapter, just to get a feeling for your PBX’s capa-
bilities. The first section briefly explains the asterisk extension language (AEL), an alter-
native way of creating the dialplan. Part two can show you a way of how to encapsulate
complex dialplan logic into little scripts using the asterisk gateway interface (AGI). And
for remotely observing and controlling asterisk you should take a look at the asterisk
manager interface (AMI).

Again, there is much programming code involved in coding the PBX, but fortunately
nothing to be afraid of. Just dare to take a look anyway.

A S T E R I S K E X T E N S I O N L A N G U A G E (A E L)
The asterisk extension language is designed to approach the programming of a dialplan in
a programming style including elements of structured programming like loops and condi-
tions. Compared to the extensions.conf dialplan creation AEL can be read and written
with the natural ease of a program. It is like going from Basic to Python, and yet the re-
sulting dialplans of AEL and extensions.conf style are isomorphic. Both methods of
dialplan configuration can be used simultaneously. In fact it is possible to include one
context in another regardless of its origin, like so:

// AEL
context ael-testcontext {
	

 includes {

	

 	

 test;
	

 };

};

context n {

	

 1234 => Noop;
};

; extensions.conf
[test]
include => n

Here the AEL context n containing the extension 1234 is included by the
extensions.conf context test which is included by the AEL context ael-testcontext.
The special characters “//” and “;” indicate the beginning of a comment in AEL or
extenions.conf respectively. The application named Noop does no operation.

For testing purposes the CLI commands ael reload and extensions reload come in
quite handy.

The next little snippet of AEL code defines extension 7360 inside context tests. Answer
does what you’d expect it to do, it answers the call. Playback(beep) plays a beep. Then
there is an infinite loop constantly waiting for a #-terminated input of digits. If there is

Asterisk - A conceptual introduction	

 13

any input within 40 seconds, the application PlayTones plays exactly the frequency of
our input. Please note, that sequences of more than one application must be enclosed by
braces ({ app; app;... };).

context tests {
	

 7360 => {
	

 	

 Answer;

	

 	

 Playback(beep);
	

 	

 while (1) {

	

 	

 	

 Read(FREQ||||40);
	

 	

 	

 if ("${FREQ}" != "") {
	

 	

 	

 	

 PlayTones(${FREQ});

	

 	

 	

 };
	

 	

 };

	

 };
};

This following code shows how to alter your caller ID based on the current value of the
caller ID. When executed, this macro will set your caller ID to 7311 if it was 2008 before,
and to 7310 otherwise.

macro cid-filter {
	

 switch (${CALLERID(number)}) {
	

 case 2008:

	

 	

 CALLERID(number)=7311;
	

 	

 break;

	

 default:
	

 	

 CALLERID(number)=7310;
	

 };

};

Marcos can be executed by prefixing an ampersand (&cid-filter;). When dialing any
number starting with 0..9 or * within the following context the cid-filter macro will
alter our caller ID and move on to another context called out-match-dst.

context out-apply-cid-filter {
	

 _[0-9*]. => {
	

 	

 &cid-filter;

	

 	

 goto out-match-dst|${EXTEN}|1;
	

 };

};

The complete definition of the asterisk extension language can be found in README.ael
of the asterisk documentation.

Asterisk - A conceptual introduction	

 14

A S T E R I S K G A T E W A Y I N T E R F A C E (A G I)
Now, that you understand the basic concepts of a dialplan, you may also have noticed its
restrictions applied implicitly using only provided dialplan applications. However writing
your own applications for use from within the dialplan can be as easy as the programming
language you choose for this task. The Asterisk gateway interface - aka. AGI - defines a
simple line-based and human readable protocol on top of standard I/O similar to CGI for
the WWW. Since most programming languages support standard I/O communication
you are completely free to choose the language of your choice.

AGI scripts are invoked by AGI application:

exten => 7361,1,AGI(test.sh)

Special derivatives of the AGI command - FastAGI, EAGI, DeadAGI - are available, too,
but let’s focus on the concept of AGI programming.

AGI scripts reside in /var/lib/asterisk/agi-bin by default. That’s where test.sh is located. It
shows a plain bash-script which will basically answer the call, stream a file called ‘beep’
and hangup:

#!/bin/sh
x=start
while ["$x" != ""]; do

	

 read x
done

echo ANSWER
read

echo "VERBOSE \"streaming file beep\" \"4\""

read

echo "STREAM FILE \"beep\" \"#\""

read

echo HANGUP
read

During the while loop at the beginning of the script environment variables are read and
immediately discarded since we won’t need them for this simple test example. One con-
venient possibility to observe the communication between asterisk and your AGI script
is to enable the AGI debugging mode9. Subsequent calls of echo and read will each issue
an AGI command and receive one line of response which could be evaluated for failures.

Asterisk - A conceptual introduction	

 15

9 CLI command: agi debug

A complete list of AGI commands of your Asterisk installation, such as ANSWER and HAN-
GUP, is shown on CLI: show agi. ANSWER undoubtedly answers the call. VERBOSE can inject
a log message with a specified verbosity level probably leading to the message being dis-
played on the asterisk console. STREAM FILE streams a file, which can be interrupted by
the given symbols (e.g. #). HANGUP terminates the connection and may also terminate the
AGI process.

For easier handling of the AGI protocol there are modules available for many languages
10like Java, Perl, Python, Tcl, Ruby, C, C#. The equivalent to the previous example rewrit-
ten in Tcl using the appropriate helper module11 could look like this:

#!/usr/bin/tclsh
package require agi

agi::init
agi::answer

agi::verbose "streaming file beep" 4
agi::streamfile "beep"
agi::hangup

As you can imagine, the integration of your own code can be quite simple at this point.
You could access databases, query URLs, send messages, open garage doors, you name it.

More on AGI may be found scattered throughout the net12, although I find reading the
example scripts bundled with asterisk can be a good starting point.

A S T E R I S K M A N A G E R I N T E R F A C E (A M I)
A remote control for asterisk is what we are looking at here. The CLI is for us humans
what’s the AMI for scripts. They can simply connect to a TCP port - 5038 by default -
and issue commands in a human readable, yet machine parsable format. Commands can
be processed synchronously or asynchronously, meaning they either block and wait for its
completion or return immediately and signal its end and possible return values later.

Additionally the AMI can be used to subscribe to events like an incoming call or a regis-
tration timeout.

In order to get a feeling for the protocol we will analyze a simple session initiated on the
command line using telnet:

Asterisk - A conceptual introduction	

 16

10 references and examples: http://www.voip-info.org/wiki-Asterisk+AGI

11 http://tel.sf.net/

12 http://www.google.ru/search?q=asterisk+agi

http://www.voip-info.org/wiki-Asterisk+AGI
http://www.voip-info.org/wiki-Asterisk+AGI
http://tel.sf.net
http://tel.sf.net
http://www.google.ru/search?q=asterisk+agi
http://www.google.ru/search?q=asterisk+agi

$ telnet localhost 5038
Trying 127.0.0.1...
Connected to localhost.

Escape character is '^]'.
Asterisk Call Manager/1.0

Action: Login

Username: test

Secret: test

Response: Success

Message: Authentication accepted

Event: Registry

Privilege: system,all
Channel: SIP

Domain: voipuser.org
Status: Registered

Event: PeerStatus
Privilege: system,all

Peer: SIP/1234
PeerStatus: Registered

Once the connection has been established, you should see a greeting - “Asterisk Call

Manager/1.0”. Now we can issue our commands. The first action usually resembles a
login which must be configured in advance in manager.conf. The successful login is then
being acknowledged, quickly followed by two events. At this point further commands
could be issued, depending on the configured permissions for the logged-in user.

You should keep in mind, that this protocol is using an unencrypted TCP channel with
plaintext authentication by default.

As always, details are to be found in manager.txt in the asterisk documentation and the
CLI13.

Asterisk - A conceptual introduction	

 17

13 CLI command: show manager commands

Notes

A C K N O W L E D G E M E N T S
You might have noticed the fancy photo of an old-style telephone located on the title
page of this document. It was used with kind permission of pixelquelle.de.

F U R T H E R R E A D I N G
If you are trying to gather more information about the asterisk open source PBX a good
place to start would be the asterisk homepage14. Apart from the obvious there is also a
self-inflating conglomerate of VoIP related information aka wiki15 available. For those of
us who fancy the good old hardcopy I can recommend the O’Reilly book on Asterisk as a
starting point.

A W O R D A B O U T R E L A T E D P R O J E C T S
There are numerous projects aiming to be the ultimate software PBX, each of them com-
ing with its own pros and cons. Just to mention a few outstanding projects: Jolly’s
PBX4Linux, FreeSwitch, Yate, OpenPBX. The last one actually happens to be a “freed”
branch of Asterisk incorporating many GPL-only modules and add-ons.

A U T H O R C O N T A C T
The author of this concatenation of random characters - Ben Fuhrmannek - can be con-
tacted easily by using one of the following means of communication:

eMail: bef@eventphone.de

VoIP / SIP: 7310@bef.eventphone.de

VoIP / IAX2: bef.eventphone.de/7310

IM / Jabber: bef@jabber.berlin.ccc.de

Please don’t hesitate to send any comments, critics, remarks, thoughts or even ideas you
might encounter while enjoying this light reading directly to me. I’d be delighted.

L I C E N S E
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs
2.5 License.16.

Asterisk - A conceptual introduction	

 18

14 http://www.asterisk.org

15 http://voip-info.org/wiki/

16 http://creativecommons.org/licenses/by-nc-nd/2.5/

mailto:bef@eventphone.de
mailto:bef@eventphone.de
http://www.asterisk.org
http://www.asterisk.org
http://voip-info.org/wiki/
http://voip-info.org/wiki/
http://creativecommons.org/licenses/by-nc-nd/2.5/
http://creativecommons.org/licenses/by-nc-nd/2.5/

